Current Issue : October-December Volume : 2024 Issue Number : 4 Articles : 5 Articles
Type II topoisomerases (TOP2s) play a key role in altering the DNA topology by transiently cleaving both strands of a DNA duplex. Therefore, increased TOP2 activity is associated with many cancers. Herein, we present the synthesis, structural characterization, virtual screening, and structural exploration, as well as evaluation of the antiproliferative effects of two new 4-substituted 2-(5,5-dimethyl-3-styrylcyclohex-2-enylidene)malononitrile derivatives with potential application in the drug design of isoform-specific TOP2 inhibitors. Both compounds 1 and 2 were verified by ESI-TOF-MS, NMR, and single-crystal X-ray diffraction (SCXRD) analysis. Furthermore, we applied our recently proposed SCXRD/HYdrogen DEsolvation (HYDE) technology platform in order to perform molecular modeling, virtual screening, and structural exploration with 1 and 2. For this purpose, we used the crystal structure of human TOP2β complexed to DNA and the anticancer drug etoposide. Moreover, we further evaluated the antiproliferative activity of 1 and 2 on human hepatocarcinoma HepG2 cells and compared the observed effects with those of the reference hTOP2β inhibitor etoposide. Based on the obtained results, compounds 1 and 2 showed a virtually higher binding affinity (Ki HYDE values) over etoposide towards hTOP2β but lower antiproliferative activity compared to those of etoposide....
Asiatic acid (AA) is a pentacyclic triterpene derived from the traditional medicine Centella asiatica. It is known for its anti-inflammatory, antioxidant, and lipid-regulating properties. Though previous studies have suggested its potential therapeutic benefits for atherosclerosis, its pharmacological mechanism is unclear. The objective of this study was to investigate the molecular mechanism of AA in the treatment of atherosclerosis. Therefore, network pharmacology was employed to uncover the mechanism by which AA acts as an anti-atherosclerotic agent. Furthermore, molecular docking, molecular dynamics (MD) simulation, and in vitro experiments were performed to elucidate the mechanism of AA’s anti-atherosclerotic effects. Molecular docking analysis demonstrated a strong affinity between AA and PPARγ. Further MD simulations demonstrated the favorable stability of AA-PPARγ protein complexes. In vitro experiments demonstrated that AA can dose-dependently inhibit the expression of inflammatory factors induced by lipopolysaccharide (LPS) in RAW264.7 cells. This effect may be mediated through the PPARγ/NF-κB signaling pathway. This research underscores anti-inflammation as a crucial biological process in AA treatments for atherosclerosis, with PPARγ potentially serving as a key target....
Histone deacetylases (HDACs) are important cancer drug targets. Existing FDA-approved drugs target the catalytic pocket of HDACs, which is conserved across subfamilies (classes) of HDAC. However, engineering specificity is an important goal. Herein, we use molecular modeling approaches to identify and target potential novel pockets specific to Class IIA HDAC-HDAC4 at the interface between HDAC4 and the transcriptional corepressor component protein NCoR. These pockets were screened using an ensemble docking approach combined with consensus scoring to identify compounds with a different binding mechanism than the currently known HDAC modulators. Binding was compared in experimental assays between HDAC4 and HDAC3, which belong to a different family of HDACs. HDAC4 was significantly inhibited by compound 88402 but not HDAC3. Two other compounds (67436 and 134199) had IC50 values in the low micromolar range for both HDACs, which is comparable to the known inhibitor of HDAC4, SAHA (Vorinostat). However, both of these compounds were significantly weaker inhibitors of HDAC3 than SAHA and thus more selective, albeit to a limited extent. Five compounds exhibited activity on human breast carcinoma and/or urothelial carcinoma cell lines. The present result suggests potential mechanistic and chemical approaches for developing selective HDAC4 modulators....
Cancer is one of the deadliest diseases to humanity. There is significant progress in treating this disease, but developing some drugs that can fight this disease remains a challenge in the field of medical research. Thirteen new 1,2,3-triazole linked tetrahydrocurcumin derivatives were synthesized by click reaction, including a 1,3-dipolar cycloaddition reaction of tetrahydrocurcumin baring monoalkyne with azides in good yields, and their in vitro anticancer activity against four cancer cell lines, including human cervical carcinoma (HeLa), human lung adenocarcinoma (A549), human hepatoma carcinoma (HepG2), and human colon carcinoma (HCT-116) were investigated using MTT(3-(4,5- dimethylthiazole-2-yl)-2,5-diphenyltetraz-olium bromide) assay. The newly synthesized compounds had their structures identified using NMR HRMS and IR techniques. Some of prepared compounds, including compounds 4g and 4k, showed potent cytotoxic activity against four cancer cell lines compared to the positive control of cisplatin and tetrahydrocurcumin. Compound 4g exhibited anticancer activity with a IC50 value of 1.09 ± 0.17 μM against human colon carcinoma HCT-116 and 45.16 ± 0.92 μM against A549 cell lines compared to the positive controls of tetrahydrocurcumin and cisplatin. Moreover, further biological examination in HCT-116 cells showed that compound 4g can arrest the cell cycle at the G1 phase. A docking study revealed that the potential mechanism by which 4g exerts its anti-colon cancer effect may be through inhabiting the binding of APC–Asef. Compound 4g can be used as a promising lead for further exploration of potential anticancer agents....
Indole derivatives are key components of natural products and possess a wide range of biological and pharmaceutical applications. Here, we present the synthesis of a new indole derivative, namely 2-(1-ethyl-5-nitro-1H-indole-7-carbonyl)butyl 4-methylbenzenesulfonate. The structural elucidation of this compound was accomplished through comprehensive spectroscopic analysis, including Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and high-resolution mass spectrometry (HRMS). Our molecular docking study revealed that this compound exhibits strong affinity towards tyrosinase, making it a promising candidate as an antioxidant agent....
Loading....